A minority of foci or pan-nuclear apoptotic staining of gammaH2AX in the S phase after UV damage contain DNA double-strand breaks.
نویسندگان
چکیده
UV irradiation induces histone variant H2AX phosphorylated on serine 139 (gammaH2AX) foci and high levels of pan-nuclear gammaH2AX staining without foci, but the significance of this finding is still uncertain. We examined the formation of gammaH2AX and 53BP1 that coincide at sites of double-strand breaks (DSBs) after ionizing radiation. We compared UV irradiation and treatment with etoposide, an agent that causes DSBs during DNA replication. We found that during DNA replication, UV irradiation induced at least three classes of gammaH2AX response: a minority of gammaH2AX foci colocalizing with 53BP1 foci that represent DSBs at replication sites, a majority of gammaH2AX foci that did not colocalize with 53BP1 foci, and cells with high levels of pan-nuclear gammaH2AX without foci of either gammaH2AX or 53BP1. Ataxia-telangiectasia mutated kinase and JNK mediated the UV-induced pan-nuclear gammaH2Ax, which preceded and paralleled UV-induced S phase apoptosis. These high levels of pan-nuclear gammaH2AX were further increased by loss of the bypass polymerase Pol eta and inhibition of ataxia-telangiectasia and Rad3-related, but the levels required the presence of the damage-binding proteins of excision repair xeroderma pigmentosum complementation group A and C proteins. DSBs, therefore, represent a small variable fraction of UV-induced gammaH2AX foci dependent on repair capacity, and they are not detected within high levels of pan-nuclear gammaH2AX, a preapoptotic signal associated with ATM- and JNK-dependent apoptosis during replication. The formation of gammaH2AX foci after treatment with DNA-damaging agents cannot, therefore, be used as a direct measure of DSBs without independent corroborating evidence.
منابع مشابه
H2AX phosphorylation within the G1 phase after UV irradiation depends on nucleotide excision repair and not DNA double-strand breaks.
The variant histone H2AX is phosphorylated in response to UV irradiation of primary human fibroblasts in a complex fashion that is radically different from that commonly reported after DNA double-strand breaks. H2AX phosphorylation after exposure to ionizing radiation produces foci, which are detectable by immunofluorescence microscopy and have been adopted as clear and consistent quantitative ...
متن کاملEvaluating Gamma-H2AX Expression as a Biomarker of DNA Damage after X-ray in Angiography Patients
Objective: Coronary heart disease (CHD) is one of the most common diseases. Coronary angiography (CAG) is an important apparatus used to diagnose and treat this disease. Since angiography is performed through exposure to ionizing radiation, it can cause harmful effects induced by double-stranded breaks in DNA which is potentially life-threatening damage. The aim of the present study is to inves...
متن کاملCohesin promotes the repair of ionizing radiation-induced DNA double-strand breaks in replicated chromatin
The cohesin protein complex holds sister chromatids together after synthesis until mitosis. It also contributes to post-replicative DNA repair in yeast and higher eukaryotes and accumulates at sites of laser-induced damage in human cells. Our goal was to determine whether the cohesin subunits SMC1 and Rad21 contribute to DNA double-strand break repair in X-irradiated human cells in the G2 phase...
متن کاملγH2AX Foci Form Preferentially in Euchromatin after Ionising-Radiation
BACKGROUND The histone variant histone H2A.X comprises up to 25% of the H2A complement in mammalian cells. It is rapidly phosphorylated following exposure of cells to double-strand break (DSB) inducing agents such as ionising radiation. Within minutes of DSB generation, H2AX molecules are phosphorylated in large chromatin domains flanking DNA double-strand breaks (DSBs); these domains can be ob...
متن کاملP-37: Effect of Gibberellic Acid on Sperm DNA Double Strand Integrity, Nuclear Maturity and Motility
Background: Plant growth regulators gave entry into animals and human cells through diet. Gibberellic acid (GA3) is an extensively prevalent plant growth regulator due to its use in agriculture. Therefore current study was designed to investigate the effect of GA3 compound on sperm DNA integrity, nuclear maturity and motility. Materials and Methods: To follow-up current study 12 mature male s r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 15 شماره
صفحات -
تاریخ انتشار 2010